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Fig. 6: RCS computed with 60,000 TLM time steps (cube side length = 8.97 mm,

r = 37.84, bistatic angle = 8 degrees)

Fig. 7: RCS computed with 60,000 TLM time steps (cube side length = 7.72  mm,

r = 79.46, bistatic angle = 8 degrees)

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B

02 )

Cube side length/ d

  Measurements by
 Trueman, et al.[1]

  Measurements by
 Trueman, et al.[1]

TLM

TLM

Cube side length/ d

R
ad

ar
 C

ro
ss

 S
ec

tio
n 

(d
B

02 )



0 5000 10000 15000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
y 

Fi
el

d

Number of Time Steps

0.6 0.8 1 1.2 1.4
-60

-50

-40

-30

-20

-10

0

Fig. 5: RCS computed with 15,000 TLM time steps (cube side length = 8.97 mm,

r = 37.84, bistatic angle = 8 degrees)

Fig. 4b: Time response of the high permittivity cube  for a=b= - 0.25  ( r=37.84, 1=45 0,

2=850)
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Fig. 3: Cosine modulated Gaussian temporal profile for the plane wave excitation

Fig. 4a: Time response of the high permittivity cube  for a=b=0.25 ( r=37.84, 1=45 0,

2=850)
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100 Mbytes for 100 frequency points).  One way of avoiding this is to compute the far -fields
directly in the time domain as done in [12]. In that case, Prony’ s method can be applied to esti-
mate the future time response from a short initial time response, leading to a very fast TLM analy-
sis.  Our future work will concentrate on these techniques.
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(weighted time average of the space difference) and b (weighted space average of the time differ-
ence) are plotted in Figs. 4a and 4b. Note that the oscillations start around 2500 time steps for the
case a=b=0.25, while there is no stability problem for a=b=-0.25. Hence, we have used a=b=-0.25
in all our computations. Stability beyond 60,000 time steps has been obtained in both dielectric
cubes of permittivity 37.84 and 79.46 with just 20 cells separating the cube edges and the absorb-
ing boundaries, while growing oscillations beyond 32,768 time steps have been reported in the
FDTD analysis of the cube of permittivity 79.46 using Mur ’s absorbing boundaries (in spite of
twice the spacing of 40 cells between the cube edges and the absorbing boundaries).

The computed RCS for 15,000 TLM time steps is plotted in Fig. 5. When compared with the mea-
sured results (Fig. 6), it can be seen that the convergence is not yet reached. Fig. 6 shows the RCS
data computed with 60,000 time steps. They compare well with the measurements.

Next, we have computed the RCS of a cube of size 7.72 mm and r=79.46 [1]. Again, the same
TLM discretization as above (i.e., 15 cells along the length of the cube and 20 cells between the
cube edge and the absorbing boundaries) was used. The space resolution and time step were
0.5147 mm and 0.8578 ps, respectively . The width of the cosine modulated Gaussian pulse was
148 t. Fig. 7 compares the computed RCS (using 60,000 TLM time steps) and measurement.
They compare well except for a slight shift in the TLM results towards lower frequencies because
of the coarseness error.

5. CONCLUSIONS

The RCS of high permittivity dielectric cubes has been obtained using the TLM method. The
results agree very well with the measurements published in [1]. While the frequency shift between
the TLM results and the measurements is negligible for r=37.84, it is very small in the case of

r=79.46. A much larger shift has been reported in the FDTD analysis.

Our study shows that Higdon’s absorbing boundaries have superior absorption and long term sta-
bility. Also, they are very efficient since they need to be placed only  20 cells away from the cube
surfaces.

The frequency domain near-field to far-field transformation technique requires huge disk space to
store the tangential electric and magnetic f ields on the fictitious current surfaces (of the order of

Fig. 2: The high permittivity cube with incident electric field Ey

-x

y

z

Ey



The values of a and b can be chosen to control the stability of the absorbing boundaries. Accord-
ing to Higdon [7], a  must be less than or equal to 0.5 (for a=b) to get stable absorbing boundary
conditions.

3. NEAR-FIELD TO FAR-FIELD TRANSFORMATION

The near -field to far -field transformation technique based on the equivalence principle is well
known. According to this principle, the far electromagnetic field components can be computed if
the tangential electric and magnetic f ields on a closed fictitious surface surrounding the scatterer
are known. If the fields outside of the closed surface are E s and Hs, then the surface electric and
magnetic current densities are

( 4)

where  is the local surface unit normal. These current densities can be calculated using the TLM
method. These should be calculated at the required number of frequencies and stored for further
processing. After the current densities have been computed, the electric and magnetic vector
potentials can be calculated from the following equations:

( 5)

( 6)

where xs, ys, and zs are the co-ordinates of the source point on the current surface.  and  are the
spherical co-ordinates of the far point. The far -field electric  components can be computed from
the knowledge of electric and magnetic vector potentials:

( 7)

where  is the free space impedance.

4. NUMERICAL RESULTS

The dielectric cube of size 8.97 mm and permittivity 37.84 was discretized into 15 SCN-TLM
cells on each side. The space resolution and time step were 0.598 mm and 0.9966 ps, respectively.
A plane wave with a electric f ield component Ey and magnetic field component Hz was incident
on one face of the cube normally (shown in Fig. 2). This was achieved in the symmetrical con-
densed node by launching the impulses on branch 3. We have used a cosine modulated Gaussian
pulse (shown in Fig. 3) as the excitation to make sure that only the frequencies of interest were
excited. This also ensured that the D.C. and very low frequencies were not excited, otherwise, the
absorbing boundaries could not be placed close to the cube surface. The excitation Gaussian pulse
width (corresponding to -34 dB) was 127 t. The values of the incidence angles used in the design
of the absorbing boundaries were 45 o and 85 o. The absorbing boundaries were placed 20 cells
away from the cube surfaces. The time response of the E y field for two sets of coef ficients a
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lines. The 12 transmission lines linking the Cartesian mesh of nodes together have the characteris-
tic impedance of free space. Each line is associated with two f ields. For example, a voltage
impulse incident upon the port 3 is associated with the field quantities Ey and Hz.

2. ABSORBING BOUNDARY CONDITIONS

To obtain good absorption over a wide range of incident angles, we have concatenated two f irst-
order Higdon’s boundary operators to obtain a second-order absorbing boundary condition [9]. A
voltage impulse reflected from the absorbing boundary can be computed from the knowledge of
impulses in the cells in front of the boundary using the following equation:

( 1)

The interpolation coefficients are:

( 2)

where coefficients a and b are weighted time and space averages of the space and time differences,
respectively. 1 and 2 are damping factors. The parameter gi is

(3)

where l and t are the space resolution and time step respectively . i are the incidence angles.
For the symmetrical condensed node, gi becomes .
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ABSTRACT

In this paper , the three-dimensional time domain T ransmission Line Matrix (TLM) method has
been applied to compute the RCS of dielectric cubes of relative permittivity 37.84 and 79.46, and
comparison has been made with published measurements [1]. Since the high permittivity cubes
ring for a very long time, very good quality absorbing boundary conditions having long term sta-
bility are required. W e have achieved these by modifying Higdon’ s absorbing boundary condi-
tions. Long term stability has been obtained by using proper discretization of the boundary
operators (derivatives), and very low ref lections have been obtained by concatenating two f irst-
order boundary operators. W e have obtained stability beyond 60,000 time steps by placing the
absorbing boundaries just 20 cells away from the cube surfaces (cube size is 15 cells). The RCS
data computed with the TLM method agree very well with the measurements published in [1].
The frequency shift between the TLM results and the measurements is negligible, while a consid-
erable frequency shift has been reported between results obtained with FDTD and measurement
[1].

1. INTRODUCTION

The Transmission Line Matrix (TLM) method is a numerical technique in which both space and
time are discretized [2]. The simulation of propagation of electromagnetic waves is done through
scattering of impulses in a 3-D meshed network of transmission lines. This method is suitable for
computation of radar cross-section (RCS) of complex bodies. The RCS over a wide frequency
bandwidth can be obtained from a single TLM simulation. Earlier studies on computation of RCS
using the TLM method have concentrated mainly on perfectly conducting tar gets [3-6]. This
paper studies the scattering properties of high permittivity dielectric cubes. As these cubes ring for
a very long time, highly stable absorbing boundary conditions are required for a TLM analysis as
compared to the perfectly conducting targets. Eventhough a number of absorbing boundary condi-
tions have been reported in the literature, Higdon’s absorbing boundary conditions [7] have been
found to perform better than others [8]. The absorption properties in the required frequency range
can be optimized by taking advantage of the prior information about the incident angles and by
combining several f irst-order boundary operators [9-10]. Also, the long term stability can be
obtained by choosing the proper finite differences for the boundary operators.

We have used the symmetrical condensed node (SCN) TLM [1 1] (shown in Fig.1) for obtaining
the scattered tangential electric and magnetic f ields on the fictitious current surfaces. The advan-
tages of this node when compared to the expanded TLM node and Yee’s FDTD node are the fol-
lowing: boundary description is easier, and all six field components can be defined at single points
in space. It has six branches, each branch consisting of two uncoupled two-wire transmission


