CUDA-SCN Usage Document

The TLM-SCN CUDA project consists of a 'gpu' class. This class contains the necessary methods to create an SCN Mesh structure, as well as boundaries, excitation structures, as well as sampling probes. In this example project, a WR-28 filter was implemented. This document walks through the process of coding the filter structure where boundaries, excitation, sampling among others are described. As of this writing, the CUDA driver used was version 2.3, although version 3.0 is currently being debugged.

[image:]
Figure 1: WR-28 Filter example included

[image:]
Figure 2: Instantiating the GPU object
GPU Constructor: Instantiating the GPU object is shown in figure 2, where the "STRUCTURE_DEFINITIONS.csv" file contains the definition of the overall mesh dimensions, as well as all boundary definitions. Scale can be also passed as part of the constructor, where 1 (float type) should be used initially. The scale is used to test the same structure at various scales for performance.
Iterations: Iterations can be set within the main program, however at this time, iterations have been hard-coded.

STRUCTURE DEFINITIONS

A TLM-SCN structure can be defined by editing the "STRUCTURE_DEFINITIONS.csv" file, an example of which is shown in figure 3. This file can be found in the DATA folder. If it is desired to create a new structure, the it is recommended to use an EXCEL tool also found in the DATA folder called:

	"STRUCTURE_DEFINITIONS_Tool.xlsx"

This file contains instructions on the first tab on how to create a mesh structure, where resolution and absolute dimensions of boundaries can be entered (in meters). The second tab of the excel sheet will generate node dimensions. This can be copied and pasted into the "STRUCTURE_DEFINITIONS.csv" file.

The "STRUCTURE_DEFINITIONS.csv" file's entries are described as:
· "Mesh Dimensions(X Y Z) " -defines the X,Y,Z dimensions of the 3D mesh (Note: the X mesh dimension must be a multiple of 64 until the CUDA-SCN code can be altered to compensate)
· "Resolution(m)" - define the distance between nodes
· "#Boundaries" - number of boundaries that are defined in the later part of this file
· "Ref Coef Index"- an incrementing index used along with "Ref Coef" to help define an array of reflection coefficients to be used by this structure.
· "Ref Coef" - a list of reflection coefficients that will be used by the boundaries
· "Filter" Column - Name of boundary (discarded upon CUDA code read)
· "Ref Coef Index" Column - uses list of "ref Coef" as a lookup to associate reflection coefficient with specified boundary
· "Xmin,Xmax...Zmin,Zmax" - Define dimension of boundary (must be a plane, not a 3D block)
[image:]
Figure 3: Sample "STRUCTURE_DEFINITIONS.csv" file

Excitation:
[image:]
Figure 4: Excitation
At least two steps are required to include excitation.
"excitation_CreateStructure(..) : First is to create an excitation structure object with "excitation_CreateStructure(..)" (figure 4) where propagation direction, polarization, and the excitation plane dimensions are defined. The dimensions must be defined as a plane or an error will be returned. This method returns an excitaiton_ID to be used later.
" excitation_generate_SineGaussian_array(..)": The Second step is to generate the excitation itself. In this case a gaussian sine wave. The parameters of which are listed in figure 4. This will embed the gaussian sine wave excitation into an internal array within the excitation object created previously.
"excitation_Save(..)": The excitation waveform can saved to a csv file.

Sample Probe
[image:]
Figure 5: Sample Object Creation
Sample probe object are created next. Polarization direction can be set captured or the average of a nodes voltages can be sampled.

Enable Timer
[image:]
Figure 6: Timer Enable
A timer can be enabled to measure the elapsed time of the iterations. On-screen status updates can also be enabled (figure 7).
[image:]
Figure 7: Command Window Status Updates every two seconds

Excitation Execution:

[image:]
Figure 8: Excitation Execution and start of iterations
excitation_execute_HalfSine(ID_of_excitation_obj): Executes the excitation kernel with the predefined excitation object for a half-sine excitation. The internally defined array of a gaussian sine wave will be used to impose a excitation magnitude as the iteration count marches in time. Note that iteration count does not need to be passed to this method.

[image:]
Figure 9: Single point Impulse and HalfSine Impulse
For completeness the example project includes commented code (figure 9) that show the use of two impulse excitation methods.
 excitation_execute_Impulse(x,y,z,magnitude): This function imposes an impulse at node x,y,z of a specified magnitude. This is a standalone method which does not require an excitation object to be created. At this time, all 12 voltages of the specified node are imposed with the magnitude. Future code will include polarization as a parameter.
excitation_execute_HalfSine_Impulse(excite_ID_0_REF): Uses the excitation object that was created earlier, but ignores the gaussian sine array and imposes only a magnitude of '1' on the excitation plane. Future code to include a magnitude.

Iteration Execution:

[image:]
Figure 10: Iteration command
The iteration command (figure 10) requires no parameters, and will execute the appropriate scattering kernels and advance the timestep counter forward one timestep.

Sample Execution:

[image:]
Figure 11: Sample execution. Captures samples and stores in sample arrays on GPU
The sample execution methods require the sample object ID passed as a parameter. Once executed it will execute a kernel on the GPU to take a sample and store it into an array located internal to the GPU. This GPU sample array can be extracted later for analysis.

[image:]
Figure 12: Boundary Kernel Calls
Boundary execution is shown in figure 12. Each boundary that was defined in a csv file are executed in the for-next loop where the boundary index is passed as a parameter. This sample also shows access to the number of boundaries defined (gpuA.boundaries_Num).

End of Iteration For-Next Loop and Timer Stop
[image:]
Figure 13: End of iteration loop and timer stop
Figure 13 shows the end of the iteration loop and the timer stop command. Elapsed can also be accessed and printed to the command window.

Mesh Extraction
[image:]
Figure 14: Extract GPU Mesh + export a layer of mesh nodes
Once the for-loop of iterations have completed the mesh can be copied from the GPU for analysis (figure 14). Also, a layer of the mesh can be saved to a csv:
Output_Node_Layer_XY_Plane("file.csv",z_layer, VoltageID): This will save an XY layer of the mesh to a '.csv' file. The z-layer must be specified as well as which of the 12 SCN voltages. If zero is specified for a voltage then an average of the 12 voltages per node will be saved. (note: currently only the XY plane has been implemented)

Sample Extraction:

[image:]
Figure 15: Sample extraction and save samples to .csv files
Samples are extracted from the GPU.
float *sample_gpu_samples_get(SampleID, NumOfSamples): retrieves the sample array from the GPU and stores it internally (in sample object). The number of samples must also be passed. If zero is passed then all samples are to be retrieved. The function returns a pointer to the array of samples.
sample_save_to_file("file.csv",sample_ID): saves the sample arrays just retrieved from the GPU to a .csv file.

WR-28 Filter Analysis
 When the project is compiled and run, it will first read the " STRUCTURE_DEFINITIONS.csv" file and instantiate a 'GPU' object. Once the iterations are complete, the program will save the sample data from the Ref probe, probe 1, and probe 2 to three respective .csv files.
CUDA_MATLAB S11-S21 CALCULATIONS
When the CUDA-SCN code is complete, the Matlab program "FFT_of_Cuda_savetoExcel.m" can be run. This will read in the three csv files generated by the CUDA-SCN application (Sampler_0_REF.csv, Sampler_1_Probe1.csv, Sampler_2_Probe2.csv). Be sure that this matlab .m file is located in the same directory as the csv files. The matlab file will calculate S11 and S21 parameters and then save the results by automatically pasting them into the file "MatlabFFT Results.xlsx". (this file must be closed before matlab is able to paste results into it)
MatlabFFT Results.xlsx
Open the MatlabFFT Results.xlsx file. The results of the CUDA-SCN S11,S21 parameters are shown in the graphs. What is also shown are the results of Mefisto (static data) that is used to compare and validate the CUDA-SCN code structure.
[image:]
image6.png
gpuA.iteration_timer_display ENABLE = true; // enable the iteration timer to display status updates every two seconds
gpuA.iteration timer.start ("GPU Iteration Timer Start”); // Start the iteration timer

image7.png
= C:\WINDOWS\system32\cmd.exe

Mesh Dimensions: R = 256, ¥ = 36, Z = 21, Total Nodes: 193536
Size of Mesh: 9.298 MBytes
PU Iteration Timer Start

zdone: . 8.1.%, iteration:,12131, Rate: ,257.3 (MNodes/s), 12.358<GBytes/sec)

image8.png
// Iteration for-next loop
for (int iter = D ; iter < gpuA.iterations_MazNum; iter++)(

// Excitation esecution: will excite a half sine guassian pulse defined for each excitation object

gpuA.excitation_execute HalfSine (excite_ID_0_REF);
gpuA.excitation_execute HalfSine (excite_ID_1_FILT);

image9.png
JILIIIII0Y
7 pebug impulse

//if (iter impulse_idx) {

// gpuh.excitation execute HalfSine Impulse (excite ID_0_REF);
// /*for (int z_idx = 80 ; z_idx<= 110;z_idw++) {

77 gpuA.excitation_execute_Tmpulse (132,20,z_idx, 1.00);
77 gpuA. excitation_execute Impulse (100,100,z_idx, 1.00);
iy
oo

// //gpuh.excitation execute Impulse (excite ID_2 TEST)
/7y

/7
LELEEEEEEIEER

image10.png
// SCATTER excitation (note: impulse iterchange is absorbed into scatter routine)
gpuA.iteratate () ;

image11.png
// Execute sampling: will call sample kernels and store on GBU until extracted at the end of run
gpuA. sample_execute (sample_ID_D_REF) ;

gpuA.sample_execute (sample_ID_1_PROBE1) ;

gpuA.sample_execute (sample_ID_2_PROBE2) ;

image12.png
// BOUNDARY kernel calls.
for (int bndry_idx = 0 ; bndry_idx < gpuA.boundaries_Num
gpuA. cuda_boundary_execute (bndry_idx) ;

bndry_ids++) (

image13.png
}// end of iteration for-next

printf("\n");
gpuA.iteration_timer.stop ("TIMER STOR");
printf("Elapsed Time: $f (sec) \n”,gpuA.iteration_timer.elapsed_time):

image14.png
sy
// Extract GPU Mesh from GPU to CPU
gpuA.Mesh_Device_to_host_memcopy (); // retrieve GPU node stucuture results to CPU

// export a slice of mesh data (XY plane at z_slice) to a .csv file
gpuA. output_Node_Layer_ XY_Plane ("DATA/Output_Layer Bost.csv',
9,// z-Layer coord to extract
0); // Voltage to extract to .csv ("1-127, or 'D' for average of all 12
i
1111111177

image15.png
LI

// Extract sample arrays from GEU and Save them to .csv files

// 1st parameter = sample object ID

// 2nd parameter = Number of samples to extrac. If '0' then extracts ALL samples
gpuA.sample_gpu_samples_get (sample_ID_O_REF,0); // Extract sample array from

gpuA. sample_gpu_samples_get (sample_ID_1_PROBEL,0);// Extract sample array from GPU
gpuA. sample_gpu_samples_get (sample_ID_2_PROBEZ,0);// Extract sample array from GPU

gpuA.sample_save_to_file ("DATA/Sampler_0_REF.csv",sample ID_O_REF); // Save sample array to .csv file
gpuA.sample_save to_file ("DATA/Sampler_1_Probel.csv”, sample ID_1_PROBE1);// Save sample array to .csv file
gpuA.sample_save to_file ("DATA/Sampler_2_Probe2.csv", sample ID_2_PROBEZ);// Save sample array to .csv file
i

1111111177

image16.png
H9-¢-)= MatlabFFT Results.xis - Microsoft Excel -5 x
- o x

Home | Inset Pagelayout Fomnulas Data Review View PDF Acobat

@
= - - BB AT a

P clu -

G
Paste Bz U-|E-|[S A <8 - % »| % 3| Condtional Fomat cen Sorta Find &
* g | A \ e 8] St S s | Bromn- | - i TR
Ciipboard Font 5 0 Number stes celts Editing
G % v
s [c [o [e[r [e[[[3 [c[[wm[w~ ol alwr[5s [
Pcuoasparams MEFSToS Params | MEFSToSParams
o st
¢ EAEECTETCYE frea Mersil Mersz Cussta Cuesa Mersi1 wersz1
000080 151225 054508 0 077458 036811 359205 04535 22102 1657
a 21266 125451 100757 11607 077469 034857 156945 006858 22178 1563
2566 092634 108220 21607 077378 034999 06546 0sases 2277 s
a 3766 120852 106686 32807 077203 035257 164508 056216 22473 50551
84566 155615 096815 428070769 035669 384108 02611 2215 952
El 20 1051625 136505 ossaes 53607 076366 036325 559
2 w2 = 5269
CUDAS-Params MEFiSTo S-Params =
B 374
f1a.26
os 165
301
os o521
745
o 3654
a753
5179
¥ v o
250 a0 2300 558
smose 0000 soms 000 some 00 T
S = LR —— Tea0s4] 220678 0938 59509
sss7e6 16352 138567 22608 088617 035611 s2me3 2mm 10456 9683
67,0646 156653 109337 23608 08593 03995 389873 077535 5211 79597
<28
511 (Cuda vs MEFisTo) =
12 e 5
baea1)
o8| ©
1 171
fzess|
755
7 Is2:2| 5 10
508 1091|B
& —auas11 e
3 Mers11 o £
06 et 3
Ei 72| £ 0
F oses|
) 126 §
L o4 oo = 2
=3
s 3
Ise3s|
02 ooe| 35
1
boess|
0 lorss| 0
2 20
29 30 31 Freq(GHz) 32 33 34 2
194
521 (Cuda vs MEFisTo)
12 H
0
1 e cugses2L 1o
20
_ —Mers21
7 121 @
80,
808 g S0
3 G| B
To6 S s
2 Bsse| 2
F
F i B0
S04 s 8
s e B
lase| © 25
75|
30
fraos

Sheetl Sheet2 Sheet3 #J 1

image1.png

image2.png
float scale = 1; //max:5.3 for Quadro FX 5600;

// instantiate GBU object

GPU_Space: : GPU gpuA ("Data/STRUCTURE_DEFINITIONS.csv", scale)
gpuA.iterations_MaxNum = 150000; // set up the maximum number of iterations

image3.wmf
Mesh Dimensions(X Y Z)

256

36

21

Resolution(m)

0.000215515

#Boundaries =

24

Ref Coef Index

0

1

2

Ref Coef

-1

0.153846

-1

Filter

Ref Coef Index

Xmin

Xmax

Ymin

Ymax

Zmin

Zmax

Overall Filt 1 Left Wall

1

61

61

0

35

0

20

Overall Filt 2 right wall

1

211

211

0

35

0

20

Overall Filt 3 y=min

2

60

212

1

1

0

20

Overall Filt 4 y =max

2

60

212

34

34

0

20

Overall Filt 5 z=min

2

60

212

0

35

1

1

Overall Filt 6 z=max

2

60

212

0

35

18

18

Ref WG side 1 x=min

1

1

1

0

35

0

19

Ref WG side 2 x=max

1

31

31

0

35

0

19

Ref WG side 3 y=min

2

0

32

1

1

0

19

Ref WG side 4 y=max

2

0

32

34

34

0

19

Ref WG side 5 z=min

2

0

32

0

35

1

1

Ref WG side 6 z=max

2

0

32

0

35

18

18

Pole 1 side 1 x=min

2

106

106

16

19

0

20

Pole 1 side 2 x=max

2

109

109

16

19

0

20

Pole 1 side 3 y=min

2

106

109

16

16

0

20

Pole 1 side 4 y=max

2

106

109

19

19

0

20

Pole 2 side 1 x=min

2

133

133

16

19

0

20

Pole 2 side 2 x=max

2

142

142

16

19

0

20

Pole 2 side 3 y=min

2

133

142

16

16

0

20

Pole 2 side 4 y=max

2

133

142

19

19

0

20

Pole 3 side 1 x=min

2

166

166

16

19

0

20

Pole 3 side 2 x=max

2

169

169

16

19

0

20

Pole 3 side 3 y=min

2

166

169

16

16

0

20

Pole 3 side 4 y=max

2

166

169

19

19

0

20

image4.png
JELIIEIIIEIIEII010001700170
|/ REFERENCE EXCITATION setup
// instantiate an excitation object strucutre (plane) with polerization and direction of propagation defined
int excite ID_0_REF = gpuA.excitation CreateStructure(1, // Propagation Direction: X Dir=+/-1, ¥ Dir=+/-2, Z_Dir=+/-3
3, //Polerization: X=1, Y=2, 2z=3
4*scale, //¥X_min
4*scale, // X _max
2*scale- (scale-1), //¥ min
34*scale, // Y¥_max
2*scale- (scale-1), //Z min
18*scale); // Z_max
// Generate an excitation waveform (Gaussian Sine wave) and allocate to the above excitation object
gpuA.excitation generate_ SineGaussian array (excite ID D _REF , // Excitation Object ID
31E9, //Freq (Hz)within Gaussian shape
1, // Magnitude of Gaussian shape
200%scale, // Width of Gaussian Shape (in time steps)
1000*scale,// Position of Gaussian Peak
2500%*scale);// Excitation Array size

gpuh.excitation_Save (excite ID_0_REF, // Excitation Object ID
"Data/Excitation REF.csv"); // File name to save excitation array

/7
LILLELIIIIIII0000000000077

image5.png
LELEELEIEE0E0000000007

// SAMPLING SETUP

int sample_ID_O_REF = gpuh.sample_Probe_add (gpuh.iterations_MaxNum, // Max Number of samples to capture
3, // Polerization Direction: X=1, Y=2, 2=2, NodeAverage=0
12*scale, // X-coord
17*scale, // Y-coord
9*scale);// z-coord

int sample_ID_1_PROBEL = gpuA.sample_ Probe_add (gpuA.iterations_MaxNum,3,72*scale, 17*scale, 9*scale)

int sample_ID_2_PROBEZ = gpuA.sample_ Probe_add (gpuA.iterations_MaxNum, 3,201*scale, 17*scale, 9*scale) ;//20

"

LILLIIIIIIIIIIIII0117

